Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation

0 Datasets

0 Files

English
2019
International Journal of Hydrogen Energy
Vol 44 (16)
DOI: 10.1016/j.ijhydene.2019.02.041

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Agustin Valera Medina
Agustin Valera Medina

Cardiff University

Verified
Agustin Valera Medina
Milana Guteša
Hua Xiao
+5 more

Abstract

Energy storage is one of the highest priority challenges in transitioning to a low-carbon economy. Fluctuating, intermittent primary renewable sources such as wind and solar require low-carbon storage options to enable effective load matching, ensuring security of supply. Chemical storage is one such option, with low or zero carbon fuels such as hydrogen, alcohols and ammonia having been proposed. Ammonia provides zero-carbon hydrogen storage whilst offering liquefaction at relatively low pressures and atmospheric temperatures, enabling ease of transportation in a pre-existing infrastructure. Ammonia can also be used directly as a fuel in power plants such as gas turbines to avoid complete conversion back to hydrogen. It is a relatively unreactive fuel, and so it is of interest to explore the potential utilisation of ammonia/hydrogen mixtures. Hence, the goal of this paper is to provide a first assessment of the suitability of a chosen 70%NH3 30%H2 (%vol) blend for utilisation within a gas turbine environment, based on primary combustion diagnostics including combustion stability – via OH chemiluminescence - and emissions (NOx and NH3). An established optical generic swirl-burner enabled studies of the influence of equivalence ratio (φ > 1), ambient temperature (<484 ± 10 K) and bypass air, with a focus on NOx reduction, one of the main challenges for ammonia combustion. A numerical GT cycle model is developed alongside the experimental investigation. The results demonstrate that the blend has considerable potential as a fuel substitute with reasonable combustion stability and significant reduction of emissions for the cases without bypass air, due to increased chemical reactivity of unburned ammonia. However, emissions are still above those recommended for gas turbine cycles, with a theoretical cycle that still produces low efficiencies compared to DLN methane, highlighting the requirement for new injection techniques to reduce NOx/unburned NH3 in the flue gases whilst ensuring increased power outputs.

How to cite this publication

Agustin Valera Medina, Milana Guteša, Hua Xiao, D. Pugh, Anthony Giles, Burak Göktepe, Richard Marsh, Phil Bowen (2019). Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation. International Journal of Hydrogen Energy, 44(16), pp. 8615-8626, DOI: 10.1016/j.ijhydene.2019.02.041.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

International Journal of Hydrogen Energy

DOI

10.1016/j.ijhydene.2019.02.041

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access