0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAtmospheric Rivers (ARs) are narrow bands of high-water vapor content in the low troposphere of mid-latitude regions through which most of the poleward moisture is being transported. ARs have been represented statistically as the regions of intense vertically integrated horizontal water vapor transport (IVT) in the atmosphere. These ARs have been found positively correlated with extreme precipitation and flood events at some coastal mid-latitude regions and thus have been linked to several socioeconomic implications. The robust and accurate forecasts of AR availability at a significant lead time can be a useful tool for managing AR-associated floods and water resources. To enhance the knowledge of data-driven methods for modelling nonlinear atmospheric dynamics associated with ARs, we have explored some popular deep-learning architectures for predicting AR availability. AR availability maps derived from the statistical characterization of IVT using ERA5 reanalyses data of ECMWF from the testing dataset are taken as ground truth for the prediction. The predictions of the models have been analyzed based on popularly adopted performance evaluation metrics structural similarity index measure (SSIM), mean square error (MSE), root mean square error (RMSE), and peak signal-to-noise ratio (PSNR). Our proposed autoencoder model outperforms the conventional convolutional neural network (CNN) and Conv-LSTM model. We have got comparatively higher scores (average) of SSIM (0.739) and PSNR (64.424) as well as lower scores (average) of RMSE (0.155) and MSE (0.025) for the predictions which signify the ability of our model to learn spatiotemporal features linked with AR-dynamics.
Samarth Meghani, Shivam Singh, Nagendra Kumar, Manish Kumar Goyal (2023). Predicting the spatiotemporal characteristics of atmospheric rivers: A novel data-driven approach. Global and Planetary Change, 231, pp. 104295-104295, DOI: 10.1016/j.gloplacha.2023.104295.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Global and Planetary Change
DOI
10.1016/j.gloplacha.2023.104295
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access