Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Predicting the spatiotemporal characteristics of atmospheric rivers: A novel data-driven approach

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Predicting the spatiotemporal characteristics of atmospheric rivers: A novel data-driven approach

0 Datasets

0 Files

English
2023
Global and Planetary Change
Vol 231
DOI: 10.1016/j.gloplacha.2023.104295

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Manish Kumar Goyal
Manish Kumar Goyal

Indian Institute Of Technology Indorethe Institution

Verified
Samarth Meghani
Shivam Singh
Nagendra Kumar
+1 more

Abstract

Atmospheric Rivers (ARs) are narrow bands of high-water vapor content in the low troposphere of mid-latitude regions through which most of the poleward moisture is being transported. ARs have been represented statistically as the regions of intense vertically integrated horizontal water vapor transport (IVT) in the atmosphere. These ARs have been found positively correlated with extreme precipitation and flood events at some coastal mid-latitude regions and thus have been linked to several socioeconomic implications. The robust and accurate forecasts of AR availability at a significant lead time can be a useful tool for managing AR-associated floods and water resources. To enhance the knowledge of data-driven methods for modelling nonlinear atmospheric dynamics associated with ARs, we have explored some popular deep-learning architectures for predicting AR availability. AR availability maps derived from the statistical characterization of IVT using ERA5 reanalyses data of ECMWF from the testing dataset are taken as ground truth for the prediction. The predictions of the models have been analyzed based on popularly adopted performance evaluation metrics structural similarity index measure (SSIM), mean square error (MSE), root mean square error (RMSE), and peak signal-to-noise ratio (PSNR). Our proposed autoencoder model outperforms the conventional convolutional neural network (CNN) and Conv-LSTM model. We have got comparatively higher scores (average) of SSIM (0.739) and PSNR (64.424) as well as lower scores (average) of RMSE (0.155) and MSE (0.025) for the predictions which signify the ability of our model to learn spatiotemporal features linked with AR-dynamics.

How to cite this publication

Samarth Meghani, Shivam Singh, Nagendra Kumar, Manish Kumar Goyal (2023). Predicting the spatiotemporal characteristics of atmospheric rivers: A novel data-driven approach. Global and Planetary Change, 231, pp. 104295-104295, DOI: 10.1016/j.gloplacha.2023.104295.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Global and Planetary Change

DOI

10.1016/j.gloplacha.2023.104295

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access