RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Potentials of individual atoms by convergent beam electron diffraction

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Potentials of individual atoms by convergent beam electron diffraction

0 Datasets

0 Files

$0 Value

English
2022
Carbon
Vol 201
DOI: 10.1016/j.carbon.2022.09.003

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Tatiana Latychevskaia
Colin R. Woods
Yi Bo Wang
+5 more

Abstract

In convergent beam electron diffraction (CBED) on two-dimensional (2D) materials, the intensity distributions within the individual CBED spots map the local atomic arrangements within the probed region. In this study we demonstrate that the average intensities within the CBED spots essentially depend on the scattering parameters by a single atom, thus, offering the possibility of the direct measurement of such parameters. Scattering potential of an individual atom can be approximated by the Gaussian function and its parameters, the standard deviation and the maximal phase shift, can be recovered from the ratio of the intensities in the zero- and higher orders spots in CBED pattern. In order to demonstrate this, we simulated CBED patterns and extracted the atomic scattering parameters from such patterns. In the simulated examples, no weak phase object approximation is applied and the proposed method provides accurate results even for materials with large phase shifts up to 1.5 rad, as for example tungsten. The scattering parameters recovered from the experimental CBED patterns of graphene and twisted graphene-hBN structure show good agreement with the theoretically obtained values.

How to cite this publication

Tatiana Latychevskaia, Colin R. Woods, Yi Bo Wang, Matthew Holwill, Éric Prestat, S. Mustafi, Sarah J. Haigh, Konstantin ‘kostya’ Novoselov (2022). Potentials of individual atoms by convergent beam electron diffraction. Carbon, 201, pp. 244-250, DOI: 10.1016/j.carbon.2022.09.003.

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Carbon

DOI

10.1016/j.carbon.2022.09.003

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access