0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper proposes a new damping control approach with positive acceleration, velocity and position feedback (PAVPF) scheme for piezo-actuated nanopositioning stages to implement high-bandwidth operation. To achieve this objective, the intrinsic hysteresis nonlinearity of the piezoelectric actuator is firstly handled by a feedforward compensator with a modified Prandtl–Ishlinskii model. Afterwards, the PAVPF controller with the pole-placement method is implemented to suppress the lightly damped resonant mode of the hysteresis compensated system. With the PAVPF controller, the poles of the damped system in a third-model can be placed to arbitrary positions with an analytical method. Finally, for accurately tracking a predefined trajectory, a high-gain proportional-integral (PI) controller is designed, which could deal with the disturbance and the unmodeled dynamics. For verifying the proposed PAVPF-based control approach, comparative experiments with positive velocity and position feedback controller and with PI controller are conducted on a piezo-actuated nanopositioning stage. Experimental results demonstrate that the developed control approach with PAVPF controller is effective on damping control and improves the control bandwidth of the conventional PI controller from 111 Hz to 766 Hz, which leads to the significant increase of the tracking speed.
Linlin Li, Chunxia Li, Guoying Gu, Li Zhu (2017). Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages. Mechatronics, 47, pp. 97-104, DOI: 10.1016/j.mechatronics.2017.09.003.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Mechatronics
DOI
10.1016/j.mechatronics.2017.09.003
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access