RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2014

Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection

0 Datasets

0 Files

English
2014
Diabetes
Vol 63 (6)
DOI: 10.2337/db13-1663

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Claude Bouchard
Claude Bouchard

Pennington Biomedical Research Center

Verified
Jason L. Vassy
Marie‐France Hivert
Bianca Porneala
+8 more

Abstract

Genome-wide association studies (GWAS) may have reached their limit of detecting common type 2 diabetes (T2D)–associated genetic variation. We evaluated the performance of current polygenic T2D prediction. Using data from the Framingham Offspring (FOS) and the Coronary Artery Risk Development in Young Adults (CARDIA) studies, we tested three hypotheses: 1) a 62-locus genotype risk score (GRSt) improves T2D prediction compared with previous less inclusive GRSt; 2) separate GRS for β-cell (GRSβ) and insulin resistance (GRSIR) independently predict T2D; and 3) the relationships between T2D and GRSt, GRSβ, or GRSIR do not differ between blacks and whites. Among 1,650 young white adults in CARDIA, 820 young black adults in CARDIA, and 3,471 white middle-aged adults in FOS, cumulative T2D incidence was 5.9%, 14.4%, and 12.9%, respectively, over 25 years. The 62-locus GRSt was significantly associated with incident T2D in all three groups. In FOS but not CARDIA, the 62-locus GRSt improved the model C statistic (0.698 and 0.726 for models without and with GRSt, respectively; P < 0.001) but did not materially improve risk reclassification in either study. Results were similar among blacks compared with whites. The GRSβ but not GRSIR predicted incident T2D among FOS and CARDIA whites. At the end of the era of common variant discovery for T2D, polygenic scores can predict T2D in whites and blacks but do not outperform clinical models. Further optimization of polygenic prediction may require novel analytic methods, including less common as well as functional variants.

How to cite this publication

Jason L. Vassy, Marie‐France Hivert, Bianca Porneala, Marco Dauriz, José C. Florez, Josée Dupuis, David S. Siscovick, Myriam Fornage, Laura J. Rasmussen‐Torvik, Claude Bouchard, James B. Meigs (2014). Polygenic Type 2 Diabetes Prediction at the Limit of Common Variant Detection. Diabetes, 63(6), pp. 2172-2182, DOI: 10.2337/db13-1663.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Diabetes

DOI

10.2337/db13-1663

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access