0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the long-term absence of disturbance, ecosystems often enter a decline or retrogressive phase which leads to reductions in primary productivity, plant biomass, nutrient cycling and foliar quality. However, the consequences of ecosystem retrogression for higher trophic levels such as herbivores and predators, are less clear. Using a post-fire forested island-chronosequence across which retrogression occurs, we show that nutrient availability strongly controls invertebrate herbivore biomass when predators are few, but that there is a switch from bottom-up to top-down control when predators are common. This trophic flip in herbivore control probably arises because invertebrate predators respond to alternative energy channels from the adjacent aquatic matrix, which were independent of plant biomass. Our results suggest that effects of nutrient limitation, following ecosystem retrogression, on trophic cascades are modified by independent variation in predator abundance, which requires a more holistic approach to trophic ecology to better understand herbivore effects on plant communities.
Anne Kempel, Eric Allan, Martin M. Goßner, Malte Jochum, David A. Wardle (2022). Plant-invertebrate interactions across a forested retrogressive chronosequence. bioRxiv (Cold Spring Harbor Laboratory), DOI: 10.1101/2022.03.30.486383.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
bioRxiv (Cold Spring Harbor Laboratory)
DOI
10.1101/2022.03.30.486383
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access