0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUltrasound (US)-triggered sonodynamic therapy (SDT) based on semiconductor nanomaterials has attracted considerable attention for cancer therapy. However, most inorganic sonosensitizers suffer from low efficiency due to the rapid recombination of electron-hole pairs. Herein, the Cu2-xO-BaTiO3 piezoelectric heterostructure was fabricated as a sonosensitizer and chemodynamic agent, simultaneously, for improving reactive oxygen species (ROS) generation and cancer therapeutic outcome. Under US irradiation, the Cu2-xO-BaTiO3 heterojunction with a piezotronic effect exhibits high-performance singlet oxygen (1O2) and hydroxyl radical (•OH) generation to enhance SDT. Moreover, it possesses Fenton-like reaction activity to convert endogenous H2O2 into •OH for chemodynamic therapy (CDT). The integration of SDT and CDT substantially boosts ROS generation and cellular mitochondria damage, and the in vitro and in vivo results demonstrate high cytotoxicity and tumor inhibition on murine refractory breast cancer. This work realizes improvement in cancer therapy using piezoelectric heterostructures with piezotronic effects.
Yunchao Zhao, Shaobo Wang, Yiming Ding, Zeyu Zhang, Tian Huang, Yalong Zhang, Xingyi Wan, Zhong Lin Wang, Linlin Li (2022). Piezotronic Effect-Augmented Cu<sub>2–<i>x</i></sub>O–BaTiO<sub>3</sub> Sonosensitizers for Multifunctional Cancer Dynamic Therapy. , 16(6), DOI: https://doi.org/10.1021/acsnano.2c01968.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.2c01968
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access