RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Piezotronic Effect-Augmented Cu<sub>2–<i>x</i></sub>O–BaTiO<sub>3</sub> Sonosensitizers for Multifunctional Cancer Dynamic Therapy

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Piezotronic Effect-Augmented Cu<sub>2–<i>x</i></sub>O–BaTiO<sub>3</sub> Sonosensitizers for Multifunctional Cancer Dynamic Therapy

0 Datasets

0 Files

en
2022
Vol 16 (6)
Vol. 16
DOI: 10.1021/acsnano.2c01968

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Yunchao Zhao
Shaobo Wang
Yiming Ding
+6 more

Abstract

Ultrasound (US)-triggered sonodynamic therapy (SDT) based on semiconductor nanomaterials has attracted considerable attention for cancer therapy. However, most inorganic sonosensitizers suffer from low efficiency due to the rapid recombination of electron-hole pairs. Herein, the Cu2-xO-BaTiO3 piezoelectric heterostructure was fabricated as a sonosensitizer and chemodynamic agent, simultaneously, for improving reactive oxygen species (ROS) generation and cancer therapeutic outcome. Under US irradiation, the Cu2-xO-BaTiO3 heterojunction with a piezotronic effect exhibits high-performance singlet oxygen (1O2) and hydroxyl radical (•OH) generation to enhance SDT. Moreover, it possesses Fenton-like reaction activity to convert endogenous H2O2 into •OH for chemodynamic therapy (CDT). The integration of SDT and CDT substantially boosts ROS generation and cellular mitochondria damage, and the in vitro and in vivo results demonstrate high cytotoxicity and tumor inhibition on murine refractory breast cancer. This work realizes improvement in cancer therapy using piezoelectric heterostructures with piezotronic effects.

How to cite this publication

Yunchao Zhao, Shaobo Wang, Yiming Ding, Zeyu Zhang, Tian Huang, Yalong Zhang, Xingyi Wan, Zhong Lin Wang, Linlin Li (2022). Piezotronic Effect-Augmented Cu<sub>2–<i>x</i></sub>O–BaTiO<sub>3</sub> Sonosensitizers for Multifunctional Cancer Dynamic Therapy. , 16(6), DOI: https://doi.org/10.1021/acsnano.2c01968.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.2c01968

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access