0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe report a dynamic tuning on coherent light emission wavelengths of single ZnO microwire by using the piezoelectric effect. Owing to the dominant role occupied by the piezoelectric polarization effect in the wurtzite-structure ZnO microwire, the effective dielectric constant (or refraction index) of the gain media was modulated toward an increasing trend by applying a tensile strain, resulting in a shift of the strain-mediated whispering-gallery mode (WGM) lasing at room temperature. Also, the strain required to resolve the spectra in the two operating types of PL and lasing were systematically analyzed and compared. Because of the narrow line width in the lasing mode, the strain-dependent spectral resolution was improved by an order of magnitude, making it feasible for achieving high-precision, ultrasensitive, and noncontact stress sensing. Our results have an important impact on laser modulation, optical communication, and optical sensing technology.
Junfeng Lu, Chunxiang Xu, Fangtao Li, Zheng Yang, Yiyao Peng, Xiaoyi Li, Miaoling Que, Caofeng Pan, Zhong Lin Wang (2018). Piezoelectric Effect Tuning on ZnO Microwire Whispering-Gallery Mode Lasing. , 12(12), DOI: https://doi.org/10.1021/acsnano.8b06500.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.8b06500
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access