Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Physiological and molecular bases of the boron deficiency response in tomatoes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Physiological and molecular bases of the boron deficiency response in tomatoes

0 Datasets

0 Files

English
2023
Horticulture Research
Vol 10 (12)
DOI: 10.1093/hr/uhad229

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Ping Zhang
Ping Zhang

Institution not specified

Verified
Junjun Li
Huihui Fan
Qianqian Song
+8 more

Abstract

Boron is an essential microelement for plant growth. Tomato is one of the most cultivated fruits and vegetables in the world, and boron deficiency severely inhibits its yield and quality. However, the mechanism of tomato in response to boron deficiency remains largely unclear. Here, we investigated the physiological and molecular bases of the boron deficiency response in hydroponically grown tomato seedlings. Boron deficiency repressed the expression of genes associated with nitrogen metabolism, while it induced the expression of genes related to the pentose phosphate pathway, thereby altering carbon flow to provide energy for plants to cope with stress. Boron deficiency increased the accumulation of copper, manganese and iron, thereby maintaining chlorophyll content and photosynthetic efficiency at the early stage of stress. In addition, boron deficiency downregulated the expression of genes involved in cell wall organization and reduced the contents of pectin and cellulose in roots, ultimately retarding root growth. Furthermore, boron deficiency markedly altered phytohormone levels and signaling pathways in roots. The contents of jasmonic acid, jasmonoy1-L-isoleucine, trans-zeatin riboside, abscisic acid, salicylic acid, and SA glucoside were decreased; in contrast, the contents of isopentenyladenine riboside and ethylene precursor 1-aminocyclopropane-1-carboxylic acid were increased in the roots of boron-deficient tomato plants. These results collectively indicate that tomato roots reprogram carbon/nitrogen metabolism, alter cell wall components and modulate phytohormone pathways to survive boron deficiency. This study provides a theoretical basis for further elucidating the adaptive mechanism of tomato in response to boron deficiency.

How to cite this publication

Junjun Li, Huihui Fan, Qianqian Song, Lili Jing, Hao Yu, Ruishan Li, Ping Zhang, Fei Liu, Weimin Li, Liangliang Sun, Jin Xu (2023). Physiological and molecular bases of the boron deficiency response in tomatoes. Horticulture Research, 10(12), DOI: 10.1093/hr/uhad229.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Horticulture Research

DOI

10.1093/hr/uhad229

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access