0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTo solve the problem of low accuracy in automatic concrete crack image segmentation and the non-standardization of concrete crack image datasets, an exposure-based concrete crack image capture scene characterization method was proposed, and the optimal exposure interval for crack segmentation was presented by multiple scene image capture experiments. First, current public crack datasets were collected and analyzed, and it was shown that improper spatial resolution, mislabeling, overexposure, and defocus are frequent non-standardization problems in crack dataset production. Through the analysis of the photoelectric principle in concrete crack imaging, an equivalent exposure was set as a core indicator for scene characterization. Twenty-one indoor scenes were designed by varying the illumination intensity and exposure time, and the experimental results showed that an equivalent exposure can be a core control index for scene characterization. The grayscale distribution law of concrete crack images was analyzed with four specimens’ images captured indoors in 50 exposure scenes, and the segmentation accuracy of an image from each scene was calculated through comparison with corresponding manually labeled binary files. The experiment’s results revealed that 5~50 lx·s was the optimal equivalent exposure interval for concrete crack image segmentation, in which better segmentation accuracy was achieved with an F1 score of up to 96.3%.
Haijing Liu, Renwei Luo, Yan Liu, Ji He, Yongzhi Sang, Jiayan Zheng, Zhixiang Zhou (2024). Photoelectricity Theory-Based Concrete Crack Image Segmentation and Optimal Exposure Interval Research. Applied Sciences, 14(4), pp. 1527-1527, DOI: 10.3390/app14041527.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Applied Sciences
DOI
10.3390/app14041527
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access