0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe present an approach to generate machine-learned force fields (MLFF) with beyond density functional theory (DFT) accuracy. Our approach combines on-the-fly active learning and $\Delta$-machine learning in order to generate an MLFF for zirconia based on the random phase approximation (RPA). Specifically, an MLFF trained on-the-fly during DFT based molecular dynamics simulations is corrected by another MLFF that is trained on the differences between RPA and DFT calculated energies, forces and stress tensors. Thanks to the relatively smooth nature of the differences, the expensive RPA calculations are performed only on a small number of representative structures of small unit cells. These structures are determined by a singular value decomposition rank compression of the kernel matrix with low spatial resolution. This dramatically reduces the computational cost and allows us to generate an MLFF fully capable of reproducing high-level quantum-mechanical calculations beyond DFT. We carefully validate our approach and demonstrate its success in studying the phase transitions of zirconia.
Peitao Liu, Carla Verdi, Ferenc Karsai, Kresse Georg (2022). Phase transitions of zirconia: Machine-learned force fields beyond density functional theory. Physical review. B./Physical review. B, 105(6), DOI: 10.1103/physrevb.105.l060102.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Physical review. B./Physical review. B
DOI
10.1103/physrevb.105.l060102
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access