0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes the phase separation of millimetre-scale spheres based on electrostatic charge. Initially, polymeric (Teflon, T; Nylon-6,6, N) and metallic (gold-coated Nylon-6,6, Au(N)) spheres are uniformly mixed in a two-dimensional (2D) monolayer on a gold-coated plate. Oscillating the plate vertically caused the spheres to charge by contact electrification (tribocharging). Positively charged N and negatively charged T spheres attracted each other more strongly than they attracted the capacitively charged, Au(N) spheres. The T and N spheres formed 2D Coulombic crystals, and these crystals separated from the Au(N) spheres. The extent and rate of separation increased with increasing amplitude of agitation during tribocharging, and with decreasing density of spheres on the surface. At high surface density, the T and N spheres did not separate from the Au(N) spheres. This system models the 2D nucleation of an ionic crystal from a polarizable liquid.
George K. Kaufman, Samuel W. Thomas, Meital Reches, Bryan F. Shaw, Ji Feng, George M M Whitesides (2008). Phase separation of 2D meso-scale Coulombic crystals from meso-scale polarizable “solvent”. , 5(6), DOI: https://doi.org/10.1039/b813590h.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1039/b813590h
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration