RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Perspective of soil carbon sequestration in Chilean volcanic soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Perspective of soil carbon sequestration in Chilean volcanic soils

0 Datasets

0 Files

English
2024
npj Materials Sustainability
Vol 2 (1)
DOI: 10.1038/s44296-024-00038-4

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Francisco J. Matus
Francisco J. Matus

Institution not specified

Verified
Francisco J. Matus
Osvaldo Salazar
Felipe Aburto
+11 more

Abstract

We analysed a large dataset consisting of 457 soil profiles of Andisols and Ultisols of volcanic origin compared to 60 non-volcanic soils. We hypothesised that soil pH has a greater impact on the development of Al-organomineral complexes in volcanic soils compared to non-volcanic soils, in the latter, the silt and clay fractions play a crucial role. Soil pH >4.5 strongly influenced the formation of Al-organomineral complexes in volcanic soils, while an increase in allophane content led to a decrease in SOC. Ultisols with more crystalline clays, such as halloysite and disordered kaolinite, the pH had a weaker impact and there was no effect on non-volcanic soils. Instead, a positive correlation (R2 = 0.63, p < 0.01) was found between silt and clay and SOC in non-volcanic soils, supporting our second hypothesis. Soil pH played a significant role in the interplay between Al-organomineral complexes and allophane formation, while crystalline mineralogy has a direct effect on SOC levels in non-volcanic soils.

How to cite this publication

Francisco J. Matus, Osvaldo Salazar, Felipe Aburto, Denisse Zamorano, Francisco Nájera, Radmila Jovanović, C Guerra, Luis Reyes-Rojas, Óscar Seguel, Marco Pfeiffer, José Dörner, Susana Valle, Sergio Radic‐Schilling, Efraín Duarte (2024). Perspective of soil carbon sequestration in Chilean volcanic soils. npj Materials Sustainability, 2(1), DOI: 10.1038/s44296-024-00038-4.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

14

Datasets

0

Total Files

0

Language

English

Journal

npj Materials Sustainability

DOI

10.1038/s44296-024-00038-4

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access