0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAlthough induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, has emerged as an anticancer strategy, the metabolic basis of ferroptotic death remains poorly elucidated. Here, we show that glucose determines the sensitivity of human pancreatic ductal carcinoma cells to ferroptosis induced by pharmacologically inhibiting system xc−. Mechanistically, SLC2A1-mediated glucose uptake promotes glycolysis and, thus, facilitates pyruvate oxidation, fuels the tricyclic acid cycle, and stimulates fatty acid synthesis, which finally facilitates lipid peroxidation-dependent ferroptotic death. Screening of a small interfering RNA (siRNA) library targeting metabolic enzymes leads to identification of pyruvate dehydrogenase kinase 4 (PDK4) as the top gene responsible for ferroptosis resistance. PDK4 inhibits ferroptosis by blocking pyruvate dehydrogenase-dependent pyruvate oxidation. Inhibiting PDK4 enhances the anticancer activity of system xc− inhibitors in vitro and in suitable preclinical mouse models (e.g., a high-fat diet diabetes model). These findings reveal metabolic reprogramming as a potential target for overcoming ferroptosis resistance.
Xinxin Song, Jiao Liu, Feimei Kuang, Xin Chen, Herbert J. Zeh, Rui Kang, Guido Guido Kroemer, Yangchun Xie, Daolin Tang (2021). PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. , 34(8), DOI: https://doi.org/10.1016/j.celrep.2021.108767.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.celrep.2021.108767
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access