Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Particle dispersion for indoor air quality control considering air change approach: A novel accelerated CFD-DNN prediction

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Particle dispersion for indoor air quality control considering air change approach: A novel accelerated CFD-DNN prediction

0 Datasets

0 Files

English
2024
Energy and Buildings
Vol 306
DOI: 10.1016/j.enbuild.2024.113938

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohd Hafiz Dzarfan Othman
Mohd Hafiz Dzarfan Othman

Universiti Teknologi Malaysia

Verified
Hong Yee Kek
Adib Bazgir
Huiyi Tan
+7 more

Abstract

Computational Fluid Dynamics (CFD) is a well-established tool to study fluid dynamics and particle movement, while Artificial Neural Network (ANN) models offer machine learning capabilities to accelerate indoor airflow predictions, but they still maintain a reasonable level of accuracy for prediction purposes. This study pioneers the integration of Deep Neural Network (DNN) models into indoor airflow dynamics, aiming to provide an accurate and accelerated prediction efficiency. The objective is to train two DNN models (classical and modified DNN models) to capture the complex relationships between ventilation rate, airflow patterns, and particle dispersion characteristics within buildings. Using a dataset generated from CFD simulations encompassing various air change rates, the trained modified DNN model significantly enhances prediction efficiency in term of the computational cost by 67 % reduction of CFD computational time (1 h to 20 min) while also resulting in very similar accuracy compared to the CFD outputs. The R 2 values of classical and modified DNN models (plane 1) at air flow rate equals to 4 ach are 0.6867 and 0.9567 in term of the DPM distribution, respectively. The similar pattern is observed as the accuracy of modified DNN is higher than the classical DNN for other air flow rates in terms of the DPM and velocity distributions. Accordingly, the number of prediction errors is significantly decreased as the model alters from the classical DNN to modified DNN model. The significance of this research lies in its potential to enhance the efficiency of assessing particle dispersion, allowing for the more efficient design of targeted ventilation strategies and indoor air quality control measures tailored to diverse pollutant sources emitted from humans. Integrating DNN and CFD in assessing particle dispersion characteristics is promising for improving the understanding of indoor air dynamics and facilitating data-driven decision-making for ensuring healthier and safer indoor environments.

How to cite this publication

Hong Yee Kek, Adib Bazgir, Huiyi Tan, Chew Tin Lee, Taehoon Hong, Mohd Hafiz Dzarfan Othman, Yee Van Fan, Mohamad Nur Hidayat Mat, Kun Zhang, Keng Yinn Wong (2024). Particle dispersion for indoor air quality control considering air change approach: A novel accelerated CFD-DNN prediction. Energy and Buildings, 306, pp. 113938-113938, DOI: 10.1016/j.enbuild.2024.113938.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

Energy and Buildings

DOI

10.1016/j.enbuild.2024.113938

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access