0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe intermediate product methylarsenite [MMA(III)] of arsenic (As) methylation can be methylated to dimethylarsenate (DMA), which causes rice straighthead disease via the As methylation enzyme (ArsM), demethylated to arsenite via the As demethylation enzyme (ArsI), or excreted from cells via the MMA(III) efflux enzyme (ArsP). Whereas As methylation is commonly reported in flooded soils, As demethylation is mostly mediated by aerobes. We used custom-built ROCker models (accuracies of 99.7–99.9%) to quantify the short-read sequences carrying As genes and investigate the variations in the transcriptional activity of the arsM, arsI, and arsP genes in flooded and nonflooded paddy soils. We revealed significantly (p < 0.05) greater transcriptional activity of the arsM and arsP genes in flooded than nonflooded soils, whereas the transcriptional activity of the arsI genes was comparable. MMA(III) demethylation in flooded soils is possibly coupled with denitrification, as revealed by the significantly (p < 0.05) positively correlated genes in terms of transcriptional activity. Moreover, we showed that microbes coexpressing the arsM and arsI genes were dominated by Actinomycetota and Pseudomonadota. This study sheds light on the active microbial communities involved in As methylation and demethylation in paddy soils and provides insights into the prevention of rice straighthead disease.
Ziyu Gao, Xin-Di Zhao, Chuan Chen, Fang-jie Zhao, Siyu Zhang (2025). Paddy Soil Flooding and Nonflooding Affect the Transcriptional Activity of Arsenic Methylation and Demethylation Communities. Environmental Science & Technology, DOI: 10.1021/acs.est.4c08620.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/acs.est.4c08620
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access