0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn security e-health brain neurosurgery, one of the important processes is to move the electrocoagulation to the appropriate position in order to excavate the diseased tissue. 1 However, it has been problematic for surgeons to freely operate the electrocoagulation, as the workspace is very narrow in the brain. Due to the precision, vulnerability, and important function of brain tissues, it is essential to ensure the precision and safety of brain tissues surrounding the diseased part. The present study proposes the use of a robot-assisted tele-surgery system to accomplish the process. With the aim to achieve accuracy, an output-bounded and RBF neural network–based bilateral position control method was designed to guarantee the stability and accuracy of the operation process. For the purpose of accomplishing a minimal amount of bleeding and damage, an adaptive force control of the slave manipulator was proposed, allowing it to be appropriate to contact the susceptible vessels, nerves, and brain tissues. The stability was analyzed, and the numerical simulation results revealed the high performance of the proposed controls.
Ting Wang, Xiangjun Ji, Aiguo Song, Kurosh Madani, Amine Chohra, Huimin Lu, Ramon Monero (2020). Output-Bounded and RBFNN-Based Position Tracking and Adaptive Force Control for Security Tele-Surgery. , 17(2s), DOI: https://doi.org/10.1145/3394920.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1145/3394920
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access