RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Online Unsupervised Adaptation of Latent Representation for Myoelectric Control during User-Decoder Co-Adaptation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Online Unsupervised Adaptation of Latent Representation for Myoelectric Control during User-Decoder Co-Adaptation

0 Datasets

0 Files

en
2025
Vol 33
Vol. 33
DOI: 10.1109/tnsre.2025.3545818

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Hanjie Deng
Zhikai Wei
Xuhui Hu
+4 more

Abstract

Myoelectric control interfaces, which map electromyographic (EMG) signals into control commands for external devices, have applications in active prosthesis control. However, the statistical characteristics of EMG signals change over time (e.g., because of changes in the electrode location), which makes interfaces based on static mapping unstable. Thus the user-decoder co-adaptation is needed during online operations. Nevertheless, current online decoder adaptation approaches present several practical challenges, such as expensive data labeling and slow convergence. Thus we introduce an unsupervised decoder adaptation method that converges rapidly. We use an autoencoder to extract motor intent representation in the latent manifold space rather than the sensor space, and further introduce an online unsupervised adaptation scheme based on Moore-Penrose Inverse, a noniterative approach suited for fast network re-training, to track the evolving manifold. A validation experiment first showed that the convergence time of the proposed adaptation scheme was reduced to about 50% of that for state-of-the-art methods. Online experiments further evaluated cursor and prosthetic hand control by the proposed myocontrol interface, where perturbations were representatively introduced by shifting the electrodes. Results showed that our scheme reached comparable improvements in robustness as supervised counterparts. Moreover, in a cup relocation test with a prosthetic hand, the completion time in the post-adaptation phase with electrode shift was comparable to that in the baseline phase without shift. These results suggest that our method effectively improves the accessibility and reliability of decoder adaptation, which has the potential to reduce the translational gap of myoelectric control interfaces by effective co-adaptation during operation.

How to cite this publication

Hanjie Deng, Zhikai Wei, Xuhui Hu, Hong Zeng, Aiguo Song, Dingguo Zhang, Dario Farina (2025). Online Unsupervised Adaptation of Latent Representation for Myoelectric Control during User-Decoder Co-Adaptation. , 33, DOI: https://doi.org/10.1109/tnsre.2025.3545818.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/tnsre.2025.3545818

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access