Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell

0 Datasets

0 Files

English
2019
Journal of Alloys and Compounds
Vol 793
DOI: 10.1016/j.jallcom.2019.04.114

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohd Hafiz Dzarfan Othman
Mohd Hafiz Dzarfan Othman

Universiti Teknologi Malaysia

Verified
Mohamad Fahrul Radzi Hanifah
Juhana Jaafar
Mohd Hafiz Dzarfan Othman
+5 more

Abstract

The development of the clean synthesis of efficient bimetallic Pt-Pd alloy nanoparticles supported reduced graphene oxide (RGO) catalyst (RGO/Pt-Pd) through a facile, rapid, surfactant–free and novel one-pot process of chemical reduction-assisted hydrothermal reaction using formic acid as reducing agent have been introduced. The structural, elemental composition analysis and surface morphology of the as-prepared catalysts were extensively characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, energy dispersive x-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM), respectively. The electrochemical properties, catalytic activity and long-term stability performance of the RGO/Pt-Pd nanocomposite catalyst were employed by cyclic voltammogram and chronoamperometry. Furthermore, owing to the synergetic effects of Pt and Pd nanoparticles, the unique structure of Pt-Pd alloy nanoparticles and enhanced electron transfer by RGO, the as-synthesized RGO/Pt-Pd nanocomposite catalyst has demonstrated the enlarged electrochemical surface area (ECSA) (ECSA = 0.91 cm2), remarkably higher electro-catalytic activity (If = 59.6 mA/cm2) and enhanced stability as compared to RGO/Pt (If = 23.32 mA/cm2, ECSA = 0.18 cm2) and RGO/Pd (If = 8.65 mA/cm2, ECSA = 0.11 cm2) nanocomposite catalysts toward methanol oxidation reaction (MOR). This superior catalytic activity of the as-prepared RGO/Pt-Pd nanocomposite catalyst with facile and simple preparation approach is promising a great opportunity for the development of direct methanol fuel cell.

How to cite this publication

Mohamad Fahrul Radzi Hanifah, Juhana Jaafar, Mohd Hafiz Dzarfan Othman, Ahmad Fauzi Ismail, Mukhlis A. Rahman, Norhaniza Yusof, Farhana Aziz, N.A.A. Rahman (2019). One-pot synthesis of efficient reduced graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic performance toward methanol electro-oxidation reaction in direct methanol fuel cell. Journal of Alloys and Compounds, 793, pp. 232-246, DOI: 10.1016/j.jallcom.2019.04.114.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Journal of Alloys and Compounds

DOI

10.1016/j.jallcom.2019.04.114

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access