0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper presents an overview of solution-phase methods for generating one-dimensional (1D) nanostructures of chalcogens and chalcogenides. The first part describes self-seeding techniques for the formation of pure Se, pure Te, and alloy nanostructures. Se and Te are interesting for their inherent properties such as chirality, photoconductivity, piezoelectricity, and high reactivity. The specific morphology (i.e., nanowires, nanorods, and nanotubes) and dimensions of these nanostructures could be tightly controlled. The second part describes a versatile template-engaged technique for topotactic transformation of chalcogen nanostructures into chalcogenides. This transformation enables the formation of 1D nanostructures of materials that do not have intrinsically anisotropic crystal structure. These 1D nanostructures will play an important role in the fabrication of nanoscale devices and in the study of electronic size-confinement effects.
Brian T. Mayers, Byron D. Gates, Younan Xia (2004). One-dimensional nanostructures of chalcogens and chalcogenides. , 1(1/2), DOI: https://doi.org/10.1504/ijnt.2004.003713.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1504/ijnt.2004.003713
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access