0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationThe paper presents a comparison between two different numerical modelling approaches aimed to simulate the in-plain behaviour of rammed earth walls, namely under axial, diagonal and cyclic shearcompression loading. In the first part of the study the mechanical characterisation of wallets tested under uniaxial compression and diagonal compression and walls tested under in-plane cyclic shear-compression loading is presented. The results were used to implement and validate the finite element simulations. The numerical modelling of the rammed earth samples tested is then discussed in the second part. A non-linear constitutive law based on the total strain rotating crack model (TSRCM) was employed as implemented in the DIANA® software [1]. The aim of the numerical analyses presented here is to simulate the behaviour of rammed earth under different inplane loading conditions. For the wallets, tests under static loading both macro- and micro-modelling approaches were considered for the simulation of the experimental tests. For the walls subjected to cyclic loading only the micro-modelling approach was applied for the simulation of the experimental tests. The respective FEM model was calibrated with the experimental results. The rammed earth layers were represented by continuum elements, the contact surfaces between layers by interface elements. This approach allowed assessing the influence of the apparent weakness of the interfaces between layers on the shear behaviour of rammed earth. The goal of the numerical simulation of the cyclic tests was to establish the adequacy of common analytical methods (e. g. used for masonry) applied to the analysis of rammed earth. Rammed earth exhibits brittle characteristics similar to masonry materials and is used in geometrical typologies, such as walls, common in masonry construction.
Lorenzo Miccoli, Daniel V. Oliveira, Rui A. Silva, Anastasios Drougkas, Patrick Fontana (2016). Numerical modelling of rammed earth under different in-plane load conditions.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
5
Datasets
0
Total Files
0
Language
English
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access