0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe study proposes an improved Harris hawks optimization (IHHO) algorithm by integrating the standard Harris hawks optimization (HHO) algorithm and mutation-based search mechanism for developing a high-performance machine learning solution for predicting soil compression index. HHO is a newly introduced meta-heuristic optimization algorithm (MOA) used to solve continuous search problems. Compared to the original HHO, the proposed IHHO can evade trapping in local optima, which in turn raises the search capabilities and enhances the search mechanism relying on mutation. Subsequently, a novel meta-heuristic-based soft computing technique called ELM-IHHO was established by integrating IHHO and extreme learning machine (ELM) to estimate soil compression index. A sum of 688 consolidation test data was collected for this purpose from an ongoing dedicated freight corridor railway project. To evaluate the generalization capability of the proposed ELM-IHHO model, a detailed comparison between ELM-IHHO and other well-established MOAs, such as particle swarm optimization, genetic algorithm, and biogeography-based optimization integrated with ELM, was performed. Based on the outcomes, the ELM-IHHO model exhibits superior performance over the other MOAs in predicting soil compression index.
Abidhan Bardhan, Navid Kardani, Abdel Kareem Alzo’ubi, Bishwajit Roy, Pijush Samui, Amir Gandomi (2022). Novel integration of extreme learning machine and improved Harris hawks optimization with particle swarm optimization-based mutation for predicting soil consolidation parameter. Journal of Rock Mechanics and Geotechnical Engineering, 14(5), pp. 1588-1608, DOI: 10.1016/j.jrmge.2021.12.018.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of Rock Mechanics and Geotechnical Engineering
DOI
10.1016/j.jrmge.2021.12.018
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access