0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAnthropogenic activities have raised nitrogen (N) input worldwide with profound implications for soil carbon (C) cycling in ecosystems. The specific impacts of N input on soil organic matter (SOM) pools differing in microbial availability remain debatable. For the first time, we used a much‐improved approach by effectively combining the 13 C natural abundance in SOM with 21 years of C 3 –C 4 vegetation conversion and long‐term incubation. This allows to distinguish the impact of N input on SOM pools with various turnover times. We found that N input reduced the mineralization of all SOM pools, with labile pools having greater sensitivity to N than stable ones. The suppression in SOM mineralization was notably higher in the very labile pool (18%–52%) than the labile and stable (11%–47%) and the very stable pool (3%–21%) compared to that in the unfertilized control soil. The very labile C pool made a strong contribution (up to 60%) to total CO 2 release and also contributed to 74%–96% of suppressed CO 2 with N input. This suppression of SOM mineralization by N was initially attributed to the decreased microbial biomass and soil functions. Over the long‐term, the shift in bacterial community toward Proteobacteria and reduction in functional genes for labile C degradation were the primary drivers. In conclusion, the higher the availability of the SOM pools, the stronger the suppression of their mineralization by N input. Labile SOM pools are highly sensitive to N availability and may hold a greater potential for C sequestration under N input at global scale.
Huadong Zang, Imran Mehmood, Yakov Kuzyakov, Rong Jia, Heng Gui, Еvgenia Blagodatskaya, Xingliang Xu, Pete Smith, Haiqing Chen, Zhaohai Zeng, Mingsheng Fan (2024). Not all soil carbon is created equal: Labile and stable pools under nitrogen input. Global Change Biology, 30(7), DOI: 10.1111/gcb.17405.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Global Change Biology
DOI
10.1111/gcb.17405
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access