RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Nondestructive Dimension Sorting by Soft Robotic Grippers Integrated with Triboelectric Sensor

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Nondestructive Dimension Sorting by Soft Robotic Grippers Integrated with Triboelectric Sensor

0 Datasets

0 Files

en
2022
Vol 16 (2)
Vol. 16
DOI: 10.1021/acsnano.1c10396

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Sheng Zhang
Baosen Zhang
Da Zhao
+3 more

Abstract

In smart logistics, traditional manual sorting and sorting systems based on rigid manipulators limit the warehousing development and damage the goods. Here, a nondestructive sorting method based on bionic soft fingers is proposed. This method is implemented by the soft robotic gripper (SRG) for grasping of the breakable objects, the triboelectric sensor (TES) for size sorting of the objects, and the signal processing module. In the fabrication of SRG, the silicon rubber is prepared by controlling the material synthesis process, and its Young's modulus is 600.91 kPa, which is comparable to the Young's modulus of skin tissue. Also, the maximum input pressure of SRG is 71.4 kPa. The TES has a linear relationship between pulse number and sliding displacement, and its resolution is 3 mm. It induces pulse signal sequences to quantify the SRG bending state and thus realize the size sorting of objects. Additionally, a nondestructive sorting system based on TES and SRG has been developed for fruit sorting (e.g., apples, oranges), enabling nondestructive grasping and accurate sorting. Its sorting range is 70-120 mm, and the sorting accuracy rate is up to 95%. This work also provides a way for the application of SRG and triboelectric sensors in the sorting field.

How to cite this publication

Sheng Zhang, Baosen Zhang, Da Zhao, Qi Gao, Zhong Lin Wang, Tinghai Cheng (2022). Nondestructive Dimension Sorting by Soft Robotic Grippers Integrated with Triboelectric Sensor. , 16(2), DOI: https://doi.org/10.1021/acsnano.1c10396.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.1c10396

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access