RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways

0 Datasets

0 Files

English
2017
Journal of the American Chemical Society
Vol 139 (26)
DOI: 10.1021/jacs.7b03255

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Claudia Küpper
Bhaskar Mondal
Joan Serrano‐Plana
+5 more

Abstract

C–H bond activation mediated by oxo-iron (IV) species represents the key step of many heme and nonheme O2-activating enzymes. Of crucial interest is the effect of spin state of the FeIV(O) unit. Here we report the C–H activation kinetics and corresponding theoretical investigations of an exclusive tetracarbene ligated oxo-iron(IV) complex, [LNHCFeIV(O)(MeCN)]2+ (1). Kinetic traces using substrates with bond dissociation energies (BDEs) up to 80 kcal mol–1 show pseudo-first-order behavior and large but temperature-dependent kinetic isotope effects (KIE 32 at −40 °C). When compared with a topologically related oxo-iron(IV) complex bearing an equatorial N-donor ligand, [LTMCFeIV(O) (MeCN)]2+ (A), the tetracarbene complex 1 is significantly more reactive with second order rate constants k′2 that are 2–3 orders of magnitude higher. UV–vis experiments in tandem with cryospray mass spectrometry evidence that the reaction occurs via formation of a hydroxo-iron(III) complex (4) after the initial H atom transfer (HAT). An extensive computational study using a wave function based multireference approach, viz. complete active space self-consistent field (CASSCF) followed by N-electron valence perturbation theory up to second order (NEVPT2), provided insight into the HAT trajectories of 1 and A. Calculated free energy barriers for 1 reasonably agree with experimental values. Because the strongly donating equatorial tetracarbene pushes the Fe-dx2–y2 orbital above dz2, 1 features a dramatically large quintet-triplet gap of ∼18 kcal/mol compared to ∼2–3 kcal/mol computed for A. Consequently, the HAT process performed by 1 occurs on the triplet surface only, in contrast to complex A reported to feature two-state-reactivity with contributions from both triplet and quintet states. Despite this, the reactive FeIV(O) units in 1 and A undergo the same electronic-structure changes during HAT. Thus, the unique complex 1 represents a pure "triplet-only" ferryl model.

How to cite this publication

Claudia Küpper, Bhaskar Mondal, Joan Serrano‐Plana, Iris Klawitter, Frank Neese, Miguel Costas, Shengfa Ye, Franc Meyer (2017). Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways. Journal of the American Chemical Society, 139(26), pp. 8939-8949, DOI: 10.1021/jacs.7b03255.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.7b03255

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access