0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessArsenic (As) bioavailability to rice plants is elevated in flooded paddy soils due to reductive mobilization of arsenite [As(III)]. However, some microorganisms are able to mediate anaerobic As(III) oxidation by coupling to nitrate reduction, thus attenuating As mobility. In this study, we investigated the impact of nitrate additions on As species dynamics in the porewater of four As-contaminated paddy soils. The effects of nitrate on microbial community structure and the abundance and diversity of the As(III) oxidase (aioA) genes were quantified using 16S rRNA sequencing, quantitative PCR, and aioA gene clone libraries. Nitrate additions greatly stimulated anaerobic oxidation of As(III) to As(V) and decreased total soluble As in the porewater in flooded paddy soils. Nitrate additions significantly enhanced the abundance of aioA genes and changed the microbial community structure by increasing the relative abundance of the operational taxonomic units (OTUs) from the genera Acidovorax and Azoarcus. The aioA gene sequences from the Acidovorax related OTU were also stimulated by nitrate. A bacterial strain (ST3) belonging to Acidovorax was isolated from nitrate-amended paddy soil. The strain was able to oxidize As(III) and Fe(II) under anoxic conditions using nitrate as the electron acceptor. Abiotic experiments showed that Fe(II), but not As(III), could be oxidized by nitrite. These results show that nitrate additions can stimulate As(III) oxidation in flooded paddy soils by enhancing the population of anaerobic As(III) oxidizers, offering a potential strategy to decrease As mobility in As-contaminated paddy soils.
Jun Zhang, Shi-Chen Zhao, Yan Xu, Wuxian Zhou, Ke Huang, Zhu Tang, Fang-jie Zhao (2017). Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils. Environmental Science & Technology, 51(8), pp. 4377-4386, DOI: 10.1021/acs.est.6b06255.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/acs.est.6b06255
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access