0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA series of flexible nanocomposite electrodes were fabricated by facile electro-deposition of cobalt and nickel double hydroxide (DH) nanosheets on porous NiCo2O4 nanowires grown radially on carbon fiber paper (CFP) for high capacity, high energy, and power density supercapacitors. Among different stoichiometries of CoxNi1-xDH nanosheets studied, Co0.67Ni0.33 DHs/NiCo2O4/CFP hybrid nanoarchitecture showed the best cycling stability while maintaining high capacitance of ∼1.64 F/cm(2) at 2 mA/cm(2). This hybrid composite electrode also exhibited excellent rate capability; the areal capacitance decreased less than 33% as the current density was increased from 2 to 90 mA/cm(2), offering excellent specific energy density (∼33 Wh/kg) and power density (∼41.25 kW/kg) at high cycling rates (up to150 mA/cm(2)).
Liang Huang, Dongchang Chen, Yong Ding, Feng Shi, Zhong Lin Wang, Meilin Liu (2013). Nickel–Cobalt Hydroxide Nanosheets Coated on NiCo<sub>2</sub>O<sub>4</sub> Nanowires Grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. , 13(7), DOI: https://doi.org/10.1021/nl401086t.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl401086t
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access