0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis article surveys the interdisciplinary research of neuroscience, network science, and dynamic systems, with emphasis on the emergence of brain-inspired intelligence. To replicate brain intelligence, a practical way is to reconstruct cortical networks with dynamic activities that nourish the brain functions, instead of using only artificial computing networks. The survey provides a complex network and spatiotemporal dynamics (abbr. network dynamics) perspective for understanding the brain and cortical networks and, furthermore, develops integrated approaches of neuroscience and network dynamics toward building brain-inspired intelligence with learning and resilience functions. Presented are fundamental concepts and principles of complex networks, neuroscience, and hybrid dynamic systems, as well as relevant studies about the brain and intelligence. Other promising research directions, such as brain science, data science, quantum information science, and machine behavior are also briefly discussed toward future applications.
Bin Hu, Zhi‐Hong Guan, Guanrong Chen, C. L. Philip Chen (2021). Neuroscience and Network Dynamics Toward Brain-Inspired Intelligence. IEEE Transactions on Cybernetics, 52(10), pp. 10214-10227, DOI: 10.1109/tcyb.2021.3071110.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2021.3071110
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access