RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Neuromorphic Floating-gate Memory Based on 2D Materials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Neuromorphic Floating-gate Memory Based on 2D Materials

0 Datasets

0 Files

en
2025
DOI: 10.34133/cbsystems.0256

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Chao Hu
Lijuan Liang
Jinran Yu
+7 more

Abstract

In recent years, the rapid progression of artificial intelligence and the Internet of Things has led to a significant increase in the demand for advanced computing capabilities and more robust data storage solutions. In light of these challenges, neuromorphic computing, inspired by human brain's architecture and operation principle, has surfaced as a promising answer to the growing technological demands. This novel methodology emulates the biological synaptic mechanisms for information processing, enabling efficient data transmission and computation at the identical position. Two-dimensional (2D) materials, distinguished by their atomic thickness and tunable physical properties, exhibit substantial potential in emulating synaptic plasticity and find broad applications in neuromorphic computing. With respect to device architecture, memory devices based on floating-gate (FG) structures demonstrate robust data retention capabilities and have been widely used in the realm of flash memory. This review begins with a succinct introduction to 2D materials and FG transistors, followed by an in-depth discussion on remarkable research progress in the integration of 2D materials with FG transistors for applications in neuromorphic computing and memory. This paper offers a thorough review of the existing research landscape, encapsulating the notable progress in swiftly expanding field. In conclusion, it addresses the constraints encountered by FG transistors using 2D materials and delineates potential future trajectories for investigation and innovation within this area.

How to cite this publication

Chao Hu, Lijuan Liang, Jinran Yu, Liuqi Cheng, Nianjie Zhang, Yifei Wang, Yichen Wei, Yixuan Fu, Zhong Lin Wang, Qijun Sun (2025). Neuromorphic Floating-gate Memory Based on 2D Materials. , DOI: https://doi.org/10.34133/cbsystems.0256.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.34133/cbsystems.0256

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access