0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn recent years, the rapid progression of artificial intelligence and the Internet of Things has led to a significant increase in the demand for advanced computing capabilities and more robust data storage solutions. In light of these challenges, neuromorphic computing, inspired by human brain's architecture and operation principle, has surfaced as a promising answer to the growing technological demands. This novel methodology emulates the biological synaptic mechanisms for information processing, enabling efficient data transmission and computation at the identical position. Two-dimensional (2D) materials, distinguished by their atomic thickness and tunable physical properties, exhibit substantial potential in emulating synaptic plasticity and find broad applications in neuromorphic computing. With respect to device architecture, memory devices based on floating-gate (FG) structures demonstrate robust data retention capabilities and have been widely used in the realm of flash memory. This review begins with a succinct introduction to 2D materials and FG transistors, followed by an in-depth discussion on remarkable research progress in the integration of 2D materials with FG transistors for applications in neuromorphic computing and memory. This paper offers a thorough review of the existing research landscape, encapsulating the notable progress in swiftly expanding field. In conclusion, it addresses the constraints encountered by FG transistors using 2D materials and delineates potential future trajectories for investigation and innovation within this area.
Chao Hu, Lijuan Liang, Jinran Yu, Liuqi Cheng, Nianjie Zhang, Yifei Wang, Yichen Wei, Yixuan Fu, Zhong Lin Wang, Qijun Sun (2025). Neuromorphic Floating-gate Memory Based on 2D Materials. , DOI: https://doi.org/10.34133/cbsystems.0256.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.34133/cbsystems.0256
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access