RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Nanoscale light field imaging with graphene

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Nanoscale light field imaging with graphene

0 Datasets

0 Files

$0 Value

English
2022
Communications Materials
Vol 3 (1)
DOI: 10.1038/s43246-022-00264-0

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
Tongcheng Yu
Francisco J. Rodríguez
F. Schedin
+5 more

Abstract

Modern nano-optics and nanophotonics rely heavily on the precise formation of nanostructured light fields. Accurate and deterministic light field formation and characterization are indispensable for device operation as well as for revealing the underlying physical mechanisms involved. Despite a significant progress made in detection of scattered light with extremely high precision down to 1 nm resolution, there are only a limited number of techniques for direct subwavelength light mapping which do not rely on measurements of light scattering, fluorescence, or non-linear light conversion. Hence, techniques for direct conversion of light to electrical signals with precise and non-destructive imaging of nanoscale light would be of great benefit. Here, we report a nanoscale light field imaging approach based on photodetection with a p-n junction that is induced and moved inside a graphene probe by gate voltage, formed by a set of external electrodes. The spatial resolution of this electrical scanning technique is determined by p-n junction width, reaching ~ 20 nm. The developed approach is demonstrated with mapping the electric field distribution of a plasmonic slot-waveguide at telecom wavelengths. Our method provides a non-invasive nanoscale light field imaging that ensures extremely high spatial resolution and precision.

How to cite this publication

Tongcheng Yu, Francisco J. Rodríguez, F. Schedin, Vasyl G. Kravets, Vladimir A. Zenin, Sergey I. Bozhevolnyi, Konstantin ‘kostya’ Novoselov, A. N. Grigorenko (2022). Nanoscale light field imaging with graphene. Communications Materials, 3(1), DOI: 10.1038/s43246-022-00264-0.

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Communications Materials

DOI

10.1038/s43246-022-00264-0

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access