Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Nanofluid convective heat transfer using semi analytical and numerical approaches: A review

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Nanofluid convective heat transfer using semi analytical and numerical approaches: A review

0 Datasets

0 Files

English
2016
Journal of the Taiwan Institute of Chemical Engineers
Vol 65
DOI: 10.1016/j.jtice.2016.05.014

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohsen Sheikholeslami
Mohsen Sheikholeslami

Babol Noshirvani University

Verified
Mohsen Sheikholeslami
D.D. Ganji

Abstract

The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment the heat transfer. Newly an innovative nanometer sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer size particle dispersion are called ‘nanofluids’. Two main categories were discussed in detail as the single-phase modeling which the combination of nanoparticle and base fluid is considered as a single-phase mixture with steady properties and the two-phase modeling in which the nanoparticle properties and behaviors are considered separately from the base fluid properties and behaviors. Both single phase and two phase models have been presented in this paper. This paper intends to provide a brief review of researches on nanofluid flow and heat transfer via semi analytical and numerical methods. It was also found that Nusselt number is an increasing function of nanoparticle volume fraction, Rayleigh number and Reynolds number, while it is a decreasing function of Hartmann number.

How to cite this publication

Mohsen Sheikholeslami, D.D. Ganji (2016). Nanofluid convective heat transfer using semi analytical and numerical approaches: A review. Journal of the Taiwan Institute of Chemical Engineers, 65, pp. 43-77, DOI: 10.1016/j.jtice.2016.05.014.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

Journal of the Taiwan Institute of Chemical Engineers

DOI

10.1016/j.jtice.2016.05.014

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration