0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Tribovoltaic nanogenerators (TVNGs) have the characteristics of high current density, low matched impedance and continuous output, which is expected to solve the problem of power supply for small electronic devices. However, wear occurrence in friction interface will seriously reduce the performance of TVNGs as well as lifetime. Here, we employ MXene solution as lubricate to improve output current density and lifetime of TVNG simultaneously, where a high value of 754 mA m −2 accompanied with a record durability of 90,000 cycles were achieved. By comparing multiple liquid lubricates with different polarity, we show that conductive polar liquid with MXene as additive plays a crucial role in enhancing the electrical output performance and durability of TVNG. Moreover, the universality of MXene solution is well demonstrated in various TVNGs with Cu and P -type Si, and Cu and N -GaAs as material pairs. This work may guide and accelerates the practical application of TVNG in future.
Wenyan Qiao, Linglin Zhou, Zhihao Zhao, Peiyuan Yang, Di Liu, Xiaoru Liu, Jiaqi Liu, Dongyang Liu, Zhong Lin Wang, Jie Wang (2023). MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime. , 15(1), DOI: https://doi.org/10.1007/s40820-023-01198-z.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1007/s40820-023-01198-z
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access