0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe important topic of multistability of continuous-and discrete-time neural network (NN) models has been investigated rather extensively. Concerning the design of associative memories, multistability of delayed hybrid NNs is studied in this paper with an emphasis on the impulse effects. Arising from the spiking phenomenon in biological networks, impulsive NNs provide an efficient model for synaptic interconnections among neurons. Using state-space decomposition, the coexistence of multiple equilibria of hybrid impulsive NNs is analyzed. Multistability criteria are then established regrading delayed hybrid impulsive neurodynamics, for which both the impulse effects on the convergence rate and the basins of attraction of the equilibria are discussed. Illustrative examples are given to verify the theoretical results and demonstrate an application to the design of associative memories. It is shown by an experimental example that delayed hybrid impulsive NNs have the advantages of high storage capacity and high fault tolerance when used for associative memories.
Bin Hu, Zhi‐Hong Guan, Guanrong Chen, Frank L. Lewis (2018). Multistability of Delayed Hybrid Impulsive Neural Networks With Application to Associative Memories. IEEE Transactions on Neural Networks and Learning Systems, 30(5), pp. 1537-1551, DOI: 10.1109/tnnls.2018.2870553.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Neural Networks and Learning Systems
DOI
10.1109/tnnls.2018.2870553
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access