0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe plasma levels of pro- and anticoagulant proteins are important markers for venous thrombosis (VT) risk and can be affected by both genetic and acquired factors, including cancer. Generally, these markers are measured using activity- or antibody-based assays. Targeted proteomics with stable-isotope–labeled internal standards has proven adept at the rapid, multiplex, and precise quantification of proteins in complex biological samples such as plasma. We used liquid chromatography coupled to multiple reaction monitoring (MRM) mass spectrometry to evaluate the concentrations of 31 coagulation- and fibrinolysis-related proteins in plasma from 25 healthy controls, 25 patients with VT, and 25 patients with VT who were also diagnosed with cancer. The concentration level of 1 to 3 proteotypic peptides per protein was determined, and all samples were previously characterized using traditional antibody- or activity-based methods. When comparing the conventional and the MRM strategies, the mean Pearson correlation for the 13 proteins (covered by 36 target peptides) shared between the 2 approaches was 0.77, indicating a good correlation. Additionally, MRM offers higher sensitivity (mean regression slope, 0.81), higher multiplicity in a single run, and good ability to leverage all measurements to discriminate groups using unsupervised clustering, which identified vitamin K antagonist users as well as patients with VT and cancer. The data collected using MRM show that the combination of coagulation factor levels yields signature information on VT and cancer, which was not obvious from a single measurement. These results encourage the further validation and investigation of MRM in profiling protein signature of disease.
Yassene Mohammed, Bart J. van Vlijmen, Juncong Yang, Andrew J. Percy, Magnus Palmblad, Christoph H. Borchers, Frits R. Rosendaal (2017). Multiplexed targeted proteomic assay to assess coagulation factor concentrations and thrombosis-associated cancer. Blood Advances, 1(15), pp. 1080-1087, DOI: 10.1182/bloodadvances.2017007955.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Blood Advances
DOI
10.1182/bloodadvances.2017007955
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access