0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces. Our MCP technique harnesses a universal all-in-cryogenic solvent phase transition strategy, involving instant ink solidification followed by in-situ synchronous solvent melting and cross-linking. We, therefore, can facilely fabricate various multimaterial 3D hydrogel structures with high aspect ratio complex geometries (overhanging, thin-walled, and hollow) in high fidelity. Using this approach, we design and manufacture all-printed all-hydrogel soft machines with versatile functions, such as self-sensing biomimetic heart valves with leaflet-status perception and untethered multimode turbine robots capable of in-tube blockage removal and transportation. Hydrogel-based machines have potential in a range of applications, but it can be challenging to prepare multimaterial devices with complex structures. Here, the authors report the development of a multimaterial cryogenic printing technique that can be used to prepare three-dimensional structures with geometries such as overhanging, thin-walled and hollow.
Jinhao Li, Jie Cao, Rong Bian, Rongtai Wan, Xiangyang Zhu, Baoyang Lu, Guoying Gu (2025). Multimaterial cryogenic printing of three-dimensional soft hydrogel machines. Nature Communications, 16(1), DOI: 10.1038/s41467-024-55323-6.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Nature Communications
DOI
10.1038/s41467-024-55323-6
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access