RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Multifunctional Coaxial Energy Fiber toward Energy Harvesting, Storage, and Utilization

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Multifunctional Coaxial Energy Fiber toward Energy Harvesting, Storage, and Utilization

0 Datasets

0 Files

en
2021
Vol 15 (1)
Vol. 15
DOI: 10.1021/acsnano.0c09146

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Jing Han
Chongyang Xu
Jintao Zhang
+9 more

Abstract

Fibrous energy–autonomy electronics are highly desired for wearable soft electronics, human–machine interfaces, and the Internet of Things. How to effectively integrate various functional energy fibers into them and realize versatile applications is an urgent need to be fulfilled. Here, a multifunctional coaxial energy fiber has been developed toward energy harvesting, energy storage, and energy utilization. The energy fiber is composed of an all fiber-shaped triboelectric nanogenerator (TENG), supercapacitor (SC), and pressure sensor in a coaxial geometry. The inner core is a fibrous SC by a green activation strategy for energy storage; the outer sheath is a fibrous TENG in single-electrode mode for energy harvesting, and the outer friction layer and inner layer (covered with Ag) constitute a self-powered pressure sensor. The electrical performances of each energy component are systematically investigated. The fibrous SC shows a length specific capacitance density of 13.42 mF·cm–1, good charging/discharging rate capability, and excellent cycling stability (∼96.6% retention). The fibrous TENG shows a maximum power of 2.5 μW to power an electronic watch and temperature sensor. The pressure sensor has a good enough sensitivity of 1.003 V·kPa–1 to readily monitor the real-time finger motions and work as a tactile interface. The demonstrated energy fibers have exhibited stable electrochemical and mechanical performances under mechanical deformation, which make them attractive for wearable electronics. The demonstrated soft and multifunctional coaxial energy fiber is also of great significance in a sustainable human–machine interactive system, intelligent robotic skin, security tactile switches, etc.

How to cite this publication

Jing Han, Chongyang Xu, Jintao Zhang, Nuo Xu, Yao Xiong, Xiaole Cao, Yuchen Liang, Li Zheng, Jia Sun, Junyi Zhai, Qijun Sun, Zhong Lin Wang (2021). Multifunctional Coaxial Energy Fiber toward Energy Harvesting, Storage, and Utilization. , 15(1), DOI: https://doi.org/10.1021/acsnano.0c09146.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

12

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.0c09146

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration