0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessFibrous energy–autonomy electronics are highly desired for wearable soft electronics, human–machine interfaces, and the Internet of Things. How to effectively integrate various functional energy fibers into them and realize versatile applications is an urgent need to be fulfilled. Here, a multifunctional coaxial energy fiber has been developed toward energy harvesting, energy storage, and energy utilization. The energy fiber is composed of an all fiber-shaped triboelectric nanogenerator (TENG), supercapacitor (SC), and pressure sensor in a coaxial geometry. The inner core is a fibrous SC by a green activation strategy for energy storage; the outer sheath is a fibrous TENG in single-electrode mode for energy harvesting, and the outer friction layer and inner layer (covered with Ag) constitute a self-powered pressure sensor. The electrical performances of each energy component are systematically investigated. The fibrous SC shows a length specific capacitance density of 13.42 mF·cm–1, good charging/discharging rate capability, and excellent cycling stability (∼96.6% retention). The fibrous TENG shows a maximum power of 2.5 μW to power an electronic watch and temperature sensor. The pressure sensor has a good enough sensitivity of 1.003 V·kPa–1 to readily monitor the real-time finger motions and work as a tactile interface. The demonstrated energy fibers have exhibited stable electrochemical and mechanical performances under mechanical deformation, which make them attractive for wearable electronics. The demonstrated soft and multifunctional coaxial energy fiber is also of great significance in a sustainable human–machine interactive system, intelligent robotic skin, security tactile switches, etc.
Jing Han, Chongyang Xu, Jintao Zhang, Nuo Xu, Yao Xiong, Xiaole Cao, Yuchen Liang, Li Zheng, Jia Sun, Junyi Zhai, Qijun Sun, Zhong Lin Wang (2021). Multifunctional Coaxial Energy Fiber toward Energy Harvesting, Storage, and Utilization. , 15(1), DOI: https://doi.org/10.1021/acsnano.0c09146.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.0c09146
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration