RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Multifeature Fusion-Based Thunderstorm Prediction System With Switchable Patterns

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Multifeature Fusion-Based Thunderstorm Prediction System With Switchable Patterns

0 Datasets

0 Files

en
2023
Vol 23 (16)
Vol. 23
DOI: 10.1109/jsen.2023.3291397

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hongyan Xing
Hongyan Xing

Institution not specified

Verified
Yang Xu
Hongyan Xing
Xinyuan Ji
+3 more

Abstract

Atmospheric electric field signal (AEFS) features can be characterized by their average value (AV), standard deviation (SD), and entropy value (EV). How to mine and fully utilize AEFS features to ensure reliable and efficient thunderstorm detection has not been considered so far. In this article, based on the stacked autoencoder (SAE) and extreme gradient boosting (XGBoost) model, extracted deep-seated features of AEFS are used to obtain its predicted value (PV). It fuses three regular features plus one PV feature and proposes a thunderstorm moving path (TMP) prediction system with switchable patterns among the applied three AEFS prediction models based on the convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). This fully considers that a single model is difficult to meet AEFS predictions with different weather attributes. Specifically, AEF data measured by a self-made AEF apparatus are adopted to determine feature values (FVs). According to FV intervals (FVIs) in sunny and thunderstorm weathers, the proportion of each feature satisfying FVIs is taken as the weighting factors of corresponding feature terms. A switchable pattern function with different switching conditions is formed by combining weightings and feature variables. Optimal AEFS prediction models are fixed under the same switching condition and applied to corresponding patterns. Empirical results confirm that the proposed system effectively predicts TMPs, with an average determination coefficient of 95.58%. This is the first study to design switchable patterns to detect thunderstorms from a new perspective of multiple AEFS feature fusion, which provides promising solutions to the refinement and intelligent prediction of thunderstorms.

How to cite this publication

Yang Xu, Hongyan Xing, Xinyuan Ji, Di Zhao, Xin Su, Witold Pedrycz (2023). Multifeature Fusion-Based Thunderstorm Prediction System With Switchable Patterns. , 23(16), DOI: https://doi.org/10.1109/jsen.2023.3291397.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/jsen.2023.3291397

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access