Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Multi-Objective and Multi-Variable Optimization Models of Hybrid Renewable Energy Solutions for Water–Energy Nexus

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Multi-Objective and Multi-Variable Optimization Models of Hybrid Renewable Energy Solutions for Water–Energy Nexus

0 Datasets

0 Files

English
2024
Water
Vol 16 (17)
DOI: 10.3390/w16172360

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Oscar Coronado-hernández
Oscar Coronado-hernández

Institution not specified

Verified
João S. T. Coelho
Maaike van de Loo
Juan Antonio Rodríguez Díaz
+3 more

Abstract

A new methodology, called HY4RES models, includes hybrid energy solutions (HESs) based on the availability of renewable sources, for 24 h of water allocation, using WaterGEMS 10.0 and PVGIS 5.2 as auxiliary calculations. The optimization design was achieved using Solver, with GRG nonlinear/evolutionary programming, and Python, with the non-dominated sorting genetic algorithm (NSGA-II). The study involves the implementation of complex multi-objective and multi-variable algorithms with different renewable sources, such as PV solar energy, pumped hydropower storage (PHS) energy, wind energy, grid connection energy, or battery energy, and also sensitivity analyses and comparisons of optimization models. Higher water allocations relied heavily on grid energy, especially at night when solar power was unavailable. For a case study of irrigation water needs of 800 and 1000 m3/ha, the grid is not needed, but for 3000 and 6000 m3/ha, grid energy rises significantly, reaching 5 and 14 GWh annually, respectively. When wind energy is also integrated, at night, it allows for reducing grid energy use by 60% for 3000 m3/ha of water allocation, yielding a positive lifetime cashflow (EUR 284,781). If the grid is replaced by batteries, it results in a lack of a robust backup and struggles to meet high water and energy needs. Economically, PV + wind + PHS + grid energy is the most attractive solution, reducing the dependence on auxiliary sources and benefiting from sales to the grid.

How to cite this publication

João S. T. Coelho, Maaike van de Loo, Juan Antonio Rodríguez Díaz, Oscar Coronado-hernández, Modesto Pérez‐Sánchez, Helena M. Ramos (2024). Multi-Objective and Multi-Variable Optimization Models of Hybrid Renewable Energy Solutions for Water–Energy Nexus. Water, 16(17), pp. 2360-2360, DOI: 10.3390/w16172360.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Water

DOI

10.3390/w16172360

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access