RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Multi-factor normalisation of viral counts from wastewater improves the detection accuracy of viral disease in the community

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Multi-factor normalisation of viral counts from wastewater improves the detection accuracy of viral disease in the community

0 Datasets

0 Files

English
2024
Environmental Technology & Innovation
Vol 36
DOI: 10.1016/j.eti.2024.103720

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Cameron Pellett
Kata Farkas
Rachel C. Williams
+5 more

Abstract

The detection of viruses (e.g. SARS-CoV-2, norovirus) in wastewater represents an effective way to monitor the prevalence of these pathogens circulating within the community. However, accurate quantification of viral concentrations in wastewater, proportional to human input, is constrained by a range of uncertainties, including (i) dilution within the sewer network, (ii) degradation of viral RNA during wastewater transit, (iii) catchment population and facility use, (iv) efficiency of viral concentration and extraction from wastewater, and (v) inhibition of amplification during the RT-qPCR step. Here, we address these uncertainties by investigating several potential normalisation factors including the concentration of ammonium and orthophosphate. A faecal indicator virus (crAssphage), and the recovery of the process-control viruses (murine norovirus and bacteriophage Phi6), used for quality control during the RT-qPCR step, were also considered. We found that multi-factor normalisation of SARS-CoV-2 RT-qPCR data was optimal using a combination of crAssphage, process-control virus recovery, and concentration efficiency to improve prediction accuracy relative to clinical test data. Using multi-normalised SARS-CoV-2 RT-qPCR data, we found a lasso regression model with random forest modelled residuals lowers the prediction error of positives by 46 %, compared to a single linear regression using raw data. This multi-normalised approach enables more accurate wastewater-based predictions of clinical cases up to five days in advance of clinical data, identifying trends in disease prevalence before clinical testing, and demonstrates the potential to improve viral pathogen detection for a range of currently monitored and emerging diseases.

How to cite this publication

Cameron Pellett, Kata Farkas, Rachel C. Williams, Matthew J. Wade, Andrew J. Weightman, Eleanor Jameson, Gareth Cross, Davey L Jones (2024). Multi-factor normalisation of viral counts from wastewater improves the detection accuracy of viral disease in the community. Environmental Technology & Innovation, 36, pp. 103720-103720, DOI: 10.1016/j.eti.2024.103720.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Environmental Technology & Innovation

DOI

10.1016/j.eti.2024.103720

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access