0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe detection of viruses (e.g. SARS-CoV-2, norovirus) in wastewater represents an effective way to monitor the prevalence of these pathogens circulating within the community. However, accurate quantification of viral concentrations in wastewater, proportional to human input, is constrained by a range of uncertainties, including (i) dilution within the sewer network, (ii) degradation of viral RNA during wastewater transit, (iii) catchment population and facility use, (iv) efficiency of viral concentration and extraction from wastewater, and (v) inhibition of amplification during the RT-qPCR step. Here, we address these uncertainties by investigating several potential normalisation factors including the concentration of ammonium and orthophosphate. A faecal indicator virus (crAssphage), and the recovery of the process-control viruses (murine norovirus and bacteriophage Phi6), used for quality control during the RT-qPCR step, were also considered. We found that multi-factor normalisation of SARS-CoV-2 RT-qPCR data was optimal using a combination of crAssphage, process-control virus recovery, and concentration efficiency to improve prediction accuracy relative to clinical test data. Using multi-normalised SARS-CoV-2 RT-qPCR data, we found a lasso regression model with random forest modelled residuals lowers the prediction error of positives by 46 %, compared to a single linear regression using raw data. This multi-normalised approach enables more accurate wastewater-based predictions of clinical cases up to five days in advance of clinical data, identifying trends in disease prevalence before clinical testing, and demonstrates the potential to improve viral pathogen detection for a range of currently monitored and emerging diseases.
Cameron Pellett, Kata Farkas, Rachel C. Williams, Matthew J. Wade, Andrew J. Weightman, Eleanor Jameson, Gareth Cross, Davey L Jones (2024). Multi-factor normalisation of viral counts from wastewater improves the detection accuracy of viral disease in the community. Environmental Technology & Innovation, 36, pp. 103720-103720, DOI: 10.1016/j.eti.2024.103720.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Environmental Technology & Innovation
DOI
10.1016/j.eti.2024.103720
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access