Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. MTS Decomposition and Recombining Significantly Improves Training Efficiency in Deep Learning: A Case Study in Air Quality Prediction over Sub-Tropical Area

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

MTS Decomposition and Recombining Significantly Improves Training Efficiency in Deep Learning: A Case Study in Air Quality Prediction over Sub-Tropical Area

0 Datasets

0 Files

English
2024
Atmosphere
Vol 15 (5)
DOI: 10.3390/atmos15050521

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Su-kit Tang
Su-kit Tang

Institution not specified

Verified
Benedito Chi Man Tam
Su-kit Tang
Alberto Cardoso

Abstract

It is crucial to speed up the training process of multivariate deep learning models for forecasting time series data in a real-time adaptive computing service with automated feature engineering. Multivariate time series decomposition and recombining (MTS-DR) is proposed for this purpose with better accuracy. A proposed MTS-DR model was built to prove that not only the training time is shortened but also the error loss is slightly reduced. A case study is for demonstrating air quality forecasting in sub-tropical urban cities. Since MTS decomposition reduces complexity and makes the features to be explored easier, the speed of deep learning models as well as their accuracy are improved. The experiments show it is easier to train the trend component, and there is no need to train the seasonal component with zero MSE. All forecast results are visualized to show that the total training time has been shortened greatly and that the forecast is ideal for changing trends. The proposed method is also suitable for other time series MTS with seasonal oscillations since it was applied to the datasets of six different kinds of air pollutants individually. Thus, this proposed method has some commonality and could be applied to other datasets with obvious seasonality.

How to cite this publication

Benedito Chi Man Tam, Su-kit Tang, Alberto Cardoso (2024). MTS Decomposition and Recombining Significantly Improves Training Efficiency in Deep Learning: A Case Study in Air Quality Prediction over Sub-Tropical Area. Atmosphere, 15(5), pp. 521-521, DOI: 10.3390/atmos15050521.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Atmosphere

DOI

10.3390/atmos15050521

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access