0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDual-layer hollow fiber (DLHF) membranes prepared via a phase inversion based co-extrusion technique offer a number of advantages, such as self-supporting structure, high active surface area to volume ratio, easy fabrication and ability to withstand high operating pressure. This paper reports novel DLHF membranes fabricated via a single step co-extrusion technique with immobilized titanium dioxide (TiO2) nanoparticles embedded in their outer layer. In this work, the DLHF membranes were prepared by extruding two different dope solutions simultaneously, in which the inner layer consisted of poly(vinylidene fluoride) (PVDF) and solvent N,N-dimethylacetamide (DMAc) while the outer layer was a mixture of PVDF, TiO2 and DMAc. The effect of TiO2 loading, where the mass fraction of TiO2/PVDF was varied from 0 to 1, on the morphologies and properties of the DLHF membranes were investigated using scanning electron microscopy (SEM), contact angle goniometer, surface roughness and filtration experiments. The SEM results showed that DLHF membranes have a good interfacial adhesion between layers with no delamination found. The structure of the membranes characterized by the length of their finger-like voids was significantly affected by the TiO2 addition. The void lengths were elongated by the rise of the TiO2 loading up to certain fraction of TiO2/PVDF. Based on all the findings, it can be concluded that the proposed method of producing the DLHF membranes could provide good layer–layer interfacial adhesion and well-dispersed TiO2 in their outer layer.
Hazlini Dzinun, Mohd Hafiz Dzarfan Othman, Ahmad Fauzi Ismail, Mohd Hafiz Puteh, Mukhlis A. Rahman, Juhana Jaafar (2015). Morphological study of co-extruded dual-layer hollow fiber membranes incorporated with different TiO2 loadings. Journal of Membrane Science, 479, pp. 123-131, DOI: 10.1016/j.memsci.2014.12.052.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Journal of Membrane Science
DOI
10.1016/j.memsci.2014.12.052
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access