0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMonitoring the spatiotemporal dynamics of surface water from remote sensing imagery is essential for understanding water's impact on the global ecosystem and climate change. There is often a tradeoff between the spatial and temporal resolutions of imagery acquired from current satellite sensors and as such various spatiotemporal image fusion methods have been explored to circumvent the challenges this situation presents (e.g., STARFM). However, some challenges persist in mapping surface water at the desired fine spatial and temporal resolution. Principally, the spatiotemporal changes of water bodies are often abrupt and controlled by topographic conditions, which are usually unaddressed in current spatiotemporal image fusion methods. This paper proposes the SpatioTemporal Surface Water Mapping (STSWM) method, which aims to predict Landsat-like, 30 m, surface water maps at an 8-day time step (same as the MODIS 8-day composite product) by integrating topographic information into the analysis. In addition to MODIS imagery acquired on the date of map prediction and a pair of MODIS and Landsat images acquired temporally close to the date of prediction, STSWM also uses the surface water occurrence (SWO, which represents the frequency with which water is present in a pixel) and DEM data to provide, respectively, topographic information below and above the water surface. These data are used to translate the coarse spatial resolution water distribution representation observed by MODIS into a 30 m spatial resolution water distribution map. The STSWM was used to generate an 8-day time series surface water maps of 30 m resolution in six inundation regions globally, and was compared with several other state-of-the-art spatiotemporal methods. The stratified random sampling design was used, and unbiased estimators of the accuracies were provided. The results show that STSWM generated the most accurate surface water map in which the spatial details of surface water were well-represented.
Xiaodong Li, Feng Ling, Giles Foody, Doreen S. Boyd, Lai Jiang, Yihang Zhang, Pu Zhou, Yalan Wang, Rui Chen, Yun Du (2021). Monitoring high spatiotemporal water dynamics by fusing MODIS, Landsat, water occurrence data and DEM. Remote Sensing of Environment, 265, pp. 112680-112680, DOI: 10.1016/j.rse.2021.112680.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Remote Sensing of Environment
DOI
10.1016/j.rse.2021.112680
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access