0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPairwise network models such as the Gaussian Graphical Model (GGM) are a powerful and intuitive way to analyze dependencies in multivariate data. A key assumption of the GGM is that each pairwise interaction is independent of the values of all other variables. However, in psychological research, this is often implausible. In this article, we extend the GGM by allowing each pairwise interaction between two variables to be moderated by (a subset of) all other variables in the model, and thereby introduce a Moderated Network Model (MNM). We show how to construct MNMs and propose an ℓ1-regularized nodewise regression approach to estimate them. We provide performance results in a simulation study and show that MNMs outperform the split-sample based methods Network Comparison Test (NCT) and Fused Graphical Lasso (FGL) in detecting moderation effects. Finally, we provide a fully reproducible tutorial on how to estimate MNMs with the R-package mgm and discuss possible issues with model misspecification.
Jonas M B Haslbeck, Denny Borsboom, Lourens Waldorp (2019). Moderated Network Models. Multivariate Behavioral Research, 56(2), pp. 256-287, DOI: 10.1080/00273171.2019.1677207.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Multivariate Behavioral Research
DOI
10.1080/00273171.2019.1677207
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access