0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe Devanathan-Stachurski cell is an electrochemical technique used to investigate the hydrogen diffusion and trapping in the bulk of a metal. The process of absorption and diffusion of atomic hydrogen through a metal is not fully understood yet. To investigate this problem further, we investigate the effects of hydrogen adsorption, absorption and trapping in iron alloys through the development of a numerical model representing the Devanathan-Stachurski cell. In this paper, we review how each single input parameter can be evaluated and present an investigation of the accessible parameters reporting their influence on the experimental results. In particular, we highlight the impact of the hydrogen adsorption-absorption process on the hydrogen flux passing through the metal sample. Hence, the surface state and the electrolyte influence are proven to be significant parameters influencing the overall hydrogen transport process. This effect is often overlooked in the experimental result evaluation. To come to an even more complete understanding of the situation an evaluation of the influence of the anodic side of the cell will be proposed in our follow-up paper.
Lorenzo Vecchi, Hans Simillion, R. Montoya, Dries Van Laethem, Emilie Van den Eeckhout, Kim Verbeken, Herman Terryn, Johan Deconinck, Yves Van Ingelgem (2017). Modelling of hydrogen permeation experiments in iron alloys: Characterization of the accessible parameters – Part I – The entry side. Electrochimica Acta, 262, pp. 57-65, DOI: 10.1016/j.electacta.2017.12.172.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Electrochimica Acta
DOI
10.1016/j.electacta.2017.12.172
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access