0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUnderstanding how climate can interact with other factors in determining patterns of species abundance is a persistent challenge in ecology. Recent research has suggested that the dynamics exhibited by some populations may be a non-additive function of climate, with climate affecting population growth more strongly at high density than at low density. However, we lack methodologies to adequately explain patterns in population growth generated as a result of interactions between intrinsic factors and extrinsic climatic variation in non-linear systems. We present a novel method (the Functional Coefficient Threshold Auto-Regressive (FCTAR) method) that can identify interacting influences of climate and density on population dynamics from time-series data. We demonstrate its use on count data on the size of the Soay sheep population, which is known to exhibit dynamics generated by nonlinear and non-additive interactions between density and climate, living on Hirta in the St Kilda archipelago. The FCTAR method suggests that climate fluctuations can drive the Soay sheep population between different dynamical regimes--from stable population size through limit cycles and non-periodic fluctuations.
Nils Chr. Stenseth, Kung‐Sik Chan, Giacomo Tavecchia, Tim Coulson, Atle Mysterud, Tim Clutton-brock, Bryan T. Grenfell (2004). Modelling non–additive and nonlinear signals from climatic noise in ecological time series: Soay sheep as an example. Proceedings of the Royal Society B Biological Sciences, 271(1552), pp. 1985-1993, DOI: 10.1098/rspb.2004.2794.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Proceedings of the Royal Society B Biological Sciences
DOI
10.1098/rspb.2004.2794
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access