0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPolitecnico di Milano
Floating wind turbine will suffer from more fatigue and ultimate loads compared with fixed-bottom installation due to its floating foundation, while structural control offers a possible solution for direct load reduction. This paper deals with the modelling and parameter tuning of a spar-type floating wind turbine with a tuned mass damper (TMD) installed in nacelle. First of all, a mathematical model for the platform surge-heave-pitch motion and TMD-nacelle interaction is established based on D’Alembert’s principle. Both intrinsic dynamics and external hydro and mooring effects are captured in the model, while tower flexibility is also featured. Then, different parameter tuning methods are adopted to determine the TMD parameters for effective load reduction. Finally, fully coupled nonlinear wind turbine simulations with different designs are conducted in different wind and wave conditions. The results demonstrate that the design of TMD with small spring and damping coefficients will achieve much load reduction in the above rated condition. However, it will deteriorate system performance when the turbine is working in the below rated or parked situations. In contrast, the design with large spring and damping constants will produce moderate load reduction in all working conditions.
Yulin Si, Hamid Reza Karimi, Huijun Gao (2013). Modeling and Parameter Analysis of the OC3-Hywind Floating Wind Turbine with a Tuned Mass Damper in Nacelle. Journal of Applied Mathematics, 2013, pp. 1-10, DOI: 10.1155/2013/679071.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Journal of Applied Mathematics
DOI
10.1155/2013/679071
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access