0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNanoparticles of MnO with average diameters in the 6–14 nm range have been prepared by the decomposition of manganese cupferronate in the presence of TOPO, under solvothermal conditions. Nanoparticles of NiO with average diameters in the 3–24 nm range have been prepared by the decomposition of nickel cupferronate or acetate under solvothermal conditions. The nanoparticles have been characterized by X-ray diffraction and transmission electron microscopy. Both MnO and NiO nanoparticles exhibit supermagnetism, accompanied by magnetic hysteresis below the blocking temperature (TB). The TB increases with the increase in particle size in the case of NiO, and exhibits the reverse trend in the case of MnO.
Moumita Ghosh, Kanishka Biswas, A. Sundaresan, Cnr Rao (2005). MnO and NiO nanoparticles: synthesis and magnetic properties. Journal of Materials Chemistry, 16(1), pp. 106-111, DOI: 10.1039/b511920k.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2005
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Materials Chemistry
DOI
10.1039/b511920k
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access