0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA strongly interacting plasma of linearly dispersing electron and hole excitations in two spatial dimensions (2D), also known as a Dirac fluid, can be captured by relativistic hydrodynamics and shares many universal features with other quantum critical systems. Here, we propose a one-dimensional (1D) model to capture key aspects of the 2D Dirac fluid while including lattice effects and being amenable to nonperturbative computation. When interactions are added to the Dirac-like 1D dispersion without opening a gap, we show that this kind of irrelevant interaction is able to preserve Fermi-liquid-like quasiparticle features while relaxing a zero-momentum charge current via collisions between particle-hole excitations, leading to resistivity that is linear in temperature via a mechanism previously discussed for large-diameter metallic carbon nanotubes. We further provide a microscopic lattice model and obtain numerical results via density-matrix renormalization group simulations, which support the above physical picture. The limits on such fast relaxation at strong coupling are of considerable interest because of the ubiquity of bad metals in experiments.
Yanqi Wang, Roman Rausch, Christoph Karrasch, Joel Moore (2023). Minimal one-dimensional model of bad metal behavior from fast particle-hole scattering. , 107(10), DOI: https://doi.org/10.1103/physrevb.107.l100301.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1103/physrevb.107.l100301
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access