0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessObjective To track the interplay between (micro-) structural changes along the trajectories of nociceptive pathways and its relation to the presence and intensity of neuropathic pain (NP) after spinal cord injury (SCI). Methods A quantitative neuroimaging approach employing a multiparametric mapping protocol was used, providing indirect measures of myelination (via contrasts such as magnetisation transfer (MT) saturation, longitudinal relaxation (R1)) and iron content (via effective transverse relaxation rate (R2*)) was used to track microstructural changes within nociceptive pathways. In order to characterise concurrent changes along the entire neuroaxis, a combined brain and spinal cord template embedded in the statistical parametric mapping framework was used. Multivariate source-based morphometry was performed to identify naturally grouped patterns of structural variation between individuals with and without NP after SCI. Results In individuals with NP, lower R1 and MT values are evident in the primary motor cortex and dorsolateral prefrontal cortex, while increases in R2* are evident in the cervical cord, periaqueductal grey (PAG), thalamus and anterior cingulate cortex when compared with pain-free individuals. Lower R1 values in the PAG and greater R2* values in the cervical cord are associated with NP intensity. Conclusions The degree of microstructural changes across ascending and descending nociceptive pathways is critically implicated in the maintenance of NP. Tracking maladaptive plasticity unravels the intimate relationships between neurodegenerative and compensatory processes in NP states and may facilitate patient monitoring during therapeutic trials related to pain and neuroregeneration.
Sreenath P. Kyathanahally, Michela Azzarito, Jan Rösner, Vince D. Calhoun, Claudia Blaiotta, John Ashburner, Nikolaus Weiskopf, Katja Wiech, Karl Friston, Gabriel Ziegler, Patrick Freund (2021). Microstructural plasticity in nociceptive pathways after spinal cord injury. , 92(8), DOI: https://doi.org/10.1136/jnnp-2020-325580.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1136/jnnp-2020-325580
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access