RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microstructural Characterization of Rapidly Solidified Ultrahigh Strength Aluminum Alloys

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
1998

Microstructural Characterization of Rapidly Solidified Ultrahigh Strength Aluminum Alloys

0 Datasets

0 Files

English
1998
Microscopy and Microanalysis
Vol 4 (S2)
DOI: 10.1017/s1431927600020614

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Akishisa Inoue
Akishisa Inoue

Josai International University

Verified
D.H. Ping
K. Hono
Akishisa Inoue

Abstract

Recently, Inoue et al. succeeded in fabricating ultrahigh-strength Al-based alloys consisting of a nanoscale mixture of α-Al and amorphous phases or a mixture of a-Al, amorphous and icosahedral phases in Al-TM-Ce, Al-TM-Ln (TM: transition metals) and Al-Cr-Co-Ce systems by rapid solidification [1-3]. In order to understand the mechanism of the nanoscale microstructural evolution during the rapid solidification processes in these nanocomposite alloys, we have characterized the microstructures of rapidly solidified Al94.5Cr3Co1.5Ce1 and Al96V4Fe2 alloys by atom probe field ion microscopy (APFIM) and high resolution transmission electron microscopy (HREM). TEM investigations have revealed that the as-quenched Al94.5Cr3Co1.5Ce1 alloy is composed of a nanoscale mixture of amorphous and α-Al. A typical TEM bright field micrograph is shown in Fig. 1. The microdiffraction patterns taken at various locations in the darkly contrasted region have shown that the region consists of a few interconnected α-Al grains and many localized amorphous regions which are trapped within the Al grains.

How to cite this publication

D.H. Ping, K. Hono, Akishisa Inoue (1998). Microstructural Characterization of Rapidly Solidified Ultrahigh Strength Aluminum Alloys. Microscopy and Microanalysis, 4(S2), pp. 98-99, DOI: 10.1017/s1431927600020614.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

1998

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Microscopy and Microanalysis

DOI

10.1017/s1431927600020614

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access